#### Overview of Offshore Well Completions

OOC briefing to EPA Region 6
February 22, 2017





#### Contributors

| COMPANY  | CONTACT            | POSITION            | COMPANY           | CONTACT          | POSITION            |
|----------|--------------------|---------------------|-------------------|------------------|---------------------|
| Anadarko | Susan Hathcock     | Regulatory          | Chevron           | Sarah Tsoflias   | Regualtory          |
| Anadarko | Sofia Lamon        | Environmental       | Chevron           | Bill Wood        | Completion Engineer |
| Anadarko | Dennis McDaniel    | Completion Engineer | Fieldwood         | Richard Crain    | Production Engineer |
| Anadarko | Ben Tryon          | Reservoir Engineer  | Fieldwood         | Richard Haralson | Production Engineer |
| Arena    | Connie Goers       | Regulatory          | Freeport McMoRan  | John Martini     | Regulatory/EH&S     |
| ВР       | Elizabeth Komiskey | Regulatory          | Freeport McMoRan  | Mitch Masterson  | Regulatory/EH&S     |
| ВР       | Karthik Mahadev    | Frac Team Leader    | Halliburton       | Denise Tuck      | Environmental       |
| ВР       | Adalberto Garcia   | Regulatory          | OOC               | Evan Zimmerman   | Executive Director  |
| Chevron  | Tom Anderson       | Completion Engineer | Shell             | Ron Kuehn        | Environmental       |
| Chevron  | Sandi Fury         | Regulatory          | W&T               | Steve Hamm       | Environmental       |
| Chevron  | John Hohenberger   | Reservoir Engineer  | Element Materials | Kevin Dischler   | Bioassay Services   |





#### Overview

- Introduction to US Gulf of Mexico
- Offshore Well Completion Techniques
  - Why, How & What
- Environmental Regulations Overview
- Operational Considerations
- Summary





#### Offshore Well Completions: Key Points

- Primary driver of offshore completion design is sand control with an extensive history of successful application in the GoM
- Offshore completion activities are covered extensively by existing regulations both operational & environmental
- High volume hydraulic fracturing of unconventional formations is not occurring offshore GoM
- Concerns for implications to drinking water aquifers is not pertinent to offshore operations
- Remoteness of operations ensures minimal, if any, public impacts from completion activities



#### US Gulf of Mexico OCS Overview

- ☐ Significant source of US Energy Production
  - OCS Annual Production Impact (FY 2014 data)
    - > ~ 685 MMBOE (459MM Barrels Oil & 1.33 TCF Natural Gas)
- Significant Revenue Stream to US Government
  - OCS production generates 2nd largest source of income to US treasury behind revenues collected by IRS
    - > \$7.1B in Royalties/Rents (FY 2014 data)
- Economic Engine (ONRR 2013 Economic Report, BSEE SEMP data)
  - Jobs 705,000 0.5% US employment (~ 57,000 offshore)
  - Value over \$62B value added output 0.4% GDP
- Highly Regulated Industry
  - Federal Agencies with oversight authority include:
    - > BSEE, BOEM, USCG, ONRR, EPA, F&WS, NMFS, DHS, NOAA & others





#### Offshore Well Completions: Basics

- ☐ Reservoir characteristics drive the well completion requirements:
  - Unconsolidated sands
    - ➤ high permeability reservoirs
    - ➤ formation damage (skin) bypass
    - > sand control gravel pack / frac pack
  - Consolidated sands
    - ➤ low permeability reservoirs
    - inducing relatively near well bore fracture for stimulation





#### Offshore GoM Deepwater Sand Types



Increasing Pressure & Temperature Increasing Age & Depth (lower porosity & permeability)

- Neogene (Miocene / Pliocene):
  - Permeability and porosity is maintained at shallow depth
- □ Paleogene (Oligocene / Eocene / Paleocene):
  - Permeability and porosity are challenged at depth with increased pressure & temperature
  - Includes Lower Tertiary





# Offshore E. GOM Central Planning Area Cretaceous and Jurassic Lithology







## Offshore Completion Techniques: Unconsolidated Sands – Historical



- traditional sand control
- long standing practices 50+ years
- historically, represented ~100% of GoM sand control completions
- currently, < 5% because technology has evolved</li>
- water, brine or gelled brine as a carrier fluid
- only treats annulus and / or near-wellbore area and packs the annulus for sand control
- significantly reduces amount of sand that flows into well bore
- limits plugging and reduces frequency of maintenance operations on well bore
- covered by existing regulations / permits



### Offshore Completion Techniques: Unconsolidated Sands – Current

#### Frac Pack / Gravel Pack



- long standing practice 25+ years
- currently, >75% of GoM treatments
- gelled water or brine as carrier fluid
- induces fracture to create tighter proppant pack but is not designed for significant stimulation like hydraulic fracturing
- 10 60 ft. fracture half-lengths
- typically 54-216 bbls proppant volume
- bypasses near-wellbore damage; extends sand proppant pack further distance from wellbore
- packs the annulus in a tighter manner than traditional gravel pack
- allows for higher reliability
- reduces well-intervention / sidetracks as compared to conventional sand control
- covered by existing regulations / permits



# Offshore Completion Techniques: Consolidated Sands – Why?

- ☐ In general, these formations are hydraulically fractured to:
  - improve production rates
  - recover the investment faster
  - stimulate the reservoir
  - recover reserves not otherwise commercially viable
- ☐ Additionally, in offshore fields, these formations are hydraulically fractured to:
  - reduce the total number of wells required to efficiently drain a given reservoir
    - > this results in fewer wells drilled and less environmental impacts associated with field development





# Offshore Completion Techniques: Consolidated Sands – How?

- Pumping a fluid into a consolidated permeable formation at an injection rate high enough to fracture that formation
  - higher fluid viscosity improves fracturing capability
  - higher injection rate improves fracturing capability
  - primarily designed to stimulate the reservoir
- Fracture size
  - reservoir properties contain the orientation of the fractures
  - highly controlled
  - fracture distance from wellbore is limited





## Offshore Completion Techniques: Consolidated Sands – Current



- technique has been practiced onshore for decades
- utilized offshore for ~10 years
- currently, < 5% of GoM treatments
- 200 500 ft. fracture half-lengths
- typically 216-540 bbls proppant volume / frac stage (2-5 frac stages/well)
- reservoir characteristics-driven (requirement for reservoir stimulation)
- minimizes the number of wellbores required to develop the resource
- allows development of natural resources previously not commercially viable
- discharge footprint same order of magnitude as frac pack
- covered by existing regulations / permits



# Sand Control Completion Operations: General Step-by-Step

- ☐ First, gel and water are blended together
  - Typically use quality guar, starch or cellulose gel
    - > many gel powders are found in commercial foods (ice cream, gravy, ketchup, etc.)
    - > this mixture is referred to as frac gel and is thick like vegetable oil
- Second, proppants are blended into the gel in a large blender that mixes the ingredients
  - Additives include cross-linkers, surfactants and buffers
- ☐ Finally, the resulting mixture becomes a cross-linked fluid that behaves like Jello ®





# Sand Control Completion Operations: General Step-by-Step (cont'd)

- ☐ Mixture is pumped downhole, where the gelatin-like fluid transports proppant into the created fracture
- ☐ Fracture becomes filled with proppant, and pumping is ceased
- ☐ Additives in the fluid system break the cross-link, turning the Jello ® like fluid back into a liquid
- ☐ Fracture closes on proppant trapping it in place, and fluid flows out of well during production





## Sand Control Completions Operations: General Step-by-Step (cont'd)

- □ Proppant provides a highly conductive channel to allow reservoir fluids to move easily toward the wellbore, enhancing well productivity
- Routinely utilize mini-fracs to gain information about reservoir to help design main treatment
  - Mini-fracs are followed by mini-frac flush fluid to prepare well for main treatment





#### Well Treatment Volumes

|                                                        | Offshore Co                                                          | onventional                                               | Onshore Unconventional |                                                                                     |
|--------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------|------------------------|-------------------------------------------------------------------------------------|
| Туре                                                   | Typical Volume (bbls) Unconsolidated (conv sand control & frac pack) | Typical Volume (bbls) Consolidated (hydraulic fracturing) | Typical Volume (bbls)  | Offshore Fluid Description                                                          |
| Other fluids assoc. with Well<br>Completion (non-frac) | 1,500-7,000                                                          | 1,500-7,000                                               | 1,500-7,000            | From seawater to high density salt solutions (i.e. brines) plus treatment additives |
| Mini Frac                                              | 500-700                                                              | 500-700                                                   | Not Applicable         | High density salt solutions plus treatment additives                                |
| Mini Frac Flush                                        | 500-800                                                              | 500-800                                                   | Not Applicable         | High density salt solutions plus treatment additives                                |
| Main Treatment                                         | 1,500-2,500                                                          | 5,000-7,000                                               | 30,000-50,000 approx.  | High density salt solutions plus treatment additives, including proppant            |
| Main Treatment Flush                                   | 500-800                                                              | 500-800                                                   | 200-500                | High density salt solutions plus treatment additives                                |

Note: Typical volumes denote representative volumes used in each respective environment





#### Well Completion Techniques

#### Technologies used *Onshore*

- Primary driver
  - formation stimulation
  - create fractures in tight rock
- Unconsolidated sands
  - gravel pack
  - frac pack
  - acid stimulation
- Consolidated sands
  - frac / acid stimulation
- ☐ Shale (unconventional resources)
  - high volume hydraulic fracture

#### Technologies used *Offshore*

- Primary driver
  - formation stimulation
  - sand control
- Unconsolidated sands
  - gravel pack
  - frac pack
  - acid stimulation
- Consolidated sands
  - acid stimulation
  - conventional hydraulic frac





# Environmental Regulations: Completion Operations Overview

Offshore well completion operations for consolidated and unconsolidated sands are governed by existing regulations and / or permits:

- Air Emissions regulated by BOEM through Air Quality Reviews or EPA via PSD / Title V regulations
- Water Discharges regulated by EPA through NPDES permits
- Wastes regulated by EPA, DOT, and states





#### Air Emissions

- How Regulated?
  - West of 87.5° longitude Emissions are reviewed through BOEM Air Quality Review (AQR)
     process
  - East of 87.5° longitude Emissions are reviewed through the EPA PSD and Title V permitting process
- Emissions covered include:
  - Engines (permanent and temporary)
  - Support vessels (when within 25 nm of platform or MODU, including stimulation vessels)
  - Flares
  - Etc.
- ☐ Emissions from well completion activities would be addressed





#### Water Discharges

- ☐ How Regulated?
  - EPA NPDES Permits
- ☐ In GoM, EPA has authority for permitting discharges to water under the NPDES program:
  - EPA Regions 4 (Eastern GoM) and 6 (Central & Western GoM)
  - Each region has issued a NPDES General permit for their area of the GoM (# GEG460000 and GMG290000, respectively)
  - Permits, in place since the 1990s, are renewed every five years to incorporate changes to requirements,
     initiate joint industry studies and the like
  - Permits contain specific testing requirements & limits for discharges associated with well completion / treatment / workover (CTW) operations





#### Waste Disposal

- ☐ How Regulated?
  - EPA RCRA and Solid Waste regulations
  - DOT / State waste transportation regulations
  - State waste testing & disposal regulations
- If well completion fluids do not meet NPDES discharge criteria, they are shipped to shore for disposal or recycle / reuse under the above regulations.





#### Other Considerations

- Water Resources
  - No drinking water aquifers impacted by offshore wellbores on the OCS
  - Offshore operations comply with zonal isolation standards for water and hydrocarbon bearing formations
  - Primarily use seawater, though onshore Gulf states' municipal water supplies are used to supplement
- ☐ Community Health, Noise, Traffic, Light
  - No nearby populations
- Worker Health
  - Offshore operations comply with OSHA, USCG, BSEE, etc.
- Induced Seismicity
  - No known instances observed in offshore operations





#### Offshore Well Completions: Key Points

- Primary driver of offshore completion design is sand control with an extensive history of successful application in the GoM
- Offshore completion activities are covered extensively by existing regulations both operational & environmental
- High volume hydraulic fracturing of unconventional formations is not occurring offshore GoM
- Concerns for implications to drinking water aquifers is not pertinent to offshore operations
- Remoteness of operations ensures minimal, if any, public impacts from completion activities



## Questions?



